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APPROXIMATE  RELATIONS FOR LAMINAR HEAT-TRANSFER AND 

SHEAR-STRESS FUNCTIONS IN EQUILIBRIUM DISSOCIATED AIR 

By Ernest  V. Zoby 
Langley  Research  Center 

SUMMARY 

Simple,  approximate  equations  have  been  developed  for  computing  the  normal 
derivatives of enthalpy  and  velocity  evaluated at  the  surface of a flat  plate  or  cone  and 
of a blunt  axisynlmetric body. These  approximate  equations  were  developed by corre-  
lating  exact  similar  solutions  to  the  laminar  boundary-layer  equations  for  equilibrium 
dissociated air. The  results of these  approximate  equations  represent  the  exact  solu- 
tions  within +10 percent. 

INTRODUCTION 

Local  laminar  heat-transfer  and  shear-stress  values  are  functions of the  normal 
derivatives of the  enthalpy  (temperature)  and  velocity  profiles,  respectively,  evaluated 
at  the body surface.  These  normal  derivatives  are  functions of the  boundary  conditions 
and  the  boundary-layer  chemistry, and their  computation  can  be  very  involved. 

For  a perfect  gas  these  normal  derivatives  have  been  computed by several  tech- 
niques,  and  the  results of these  computations  have  been  presented  for  wide  ranges of 
boundary  conditions  and  fluid-property  variations  in  publications  such as references 1 
to 9. Exact  and  approximate  analyses  have  been  presented  in  references 10, 11, and 12 
for  reacting  boundary  layers.  However,  solutions  for  the  normal  derivatives by these 
methods  are  time  consuming,  and  extensive  parametric  studies  such as have  been  made 
for  the  perfect  gas are not  available.  Also,  some of the  approximations a r e  tedious  to 
evaluate  and  usually  result  in a loss of accuracy  or   are  not generally  applicable  to a 
wide  range of flow  conditions o r  both.  Because of the  existing  problems  involved  with 
the  computation of the  derivatives  (and  thereby  the  heat-transfer  or  shear-stress  values), 
simple,  accurate  methods are desirable.  This  paper  presents  approximate  methods 
which  have  been  obtained  by  correlating  similar  solutions of the  boundary-layer  equa- 
tions  for  equilibrium  dissociated air. The  results of these  equations  represent  the 
exact  solutions  within kt10 percent.  The  development of the  methods is given  in  appen- 
dix  A.  In  appendix B these  methods are related  to  expressions  for  computing  the  heat 
transfer and shear  stress on flat plates,  cones,  and  blunt  axisynlmetric  bodies. 



SYMBOLS 

skin-friction  coefficient Cf 

f 

H 

h 

hE 

h* 

K 

m 

n 

t 

U 

X,Y 

P 

5 

2 

similar  stream  function 

total  enthalpy 

static  enthalpy 

reference  enthalpy X 10 gram 

Eckert 's   reference enthalpy 

constant  used  in  equation (12) to  compute 5 '  w, s 

exponent  used  in  equation (12) to  compute <k,s 

Prandtl  number 

shape  parameter in  equations (3) and (4) 

pressure  

heating rate 

effective  nose  radius 

radius of body of revolution 

static-enthalpy  ratio, - h 
He 

velocity  component  along  x-axis 

boundary-layer  coordinates  in  physical  system 

pressure-gradient  parameter 

total-  enthalpy  ratio, - 
He 
H 



P viscosity 

5 7 7 7  similarity  coordinates 

P density 

7 shear stress 

Subscripts: 

aw adiabatic  wall 

E evaluated at reference  enthalpy  hE  and  local  pressure 

e local  conditions  external  to  boundary  layer 

S stagnation  condition 

W wall  conditions 

Superscripts: 

* evaluated at reference enthalpy h" 

l first derivative  with  respect  to 17 

l l  second  derivative  with  respect  to 77 

ANALYSIS AND DISCUSSION 

Theory 

The  governing  boundary-layer  equations  which  constitute a system of nonlinear, 
partial  differential  equations  can be reduced  to  ordinary  differential  equations by a 
transformation of the  coordinate  system  and  the  assumption of local  similarity. (Even 
if s imilari ty is not assumed,  the  system of equations is related  to a transformed  coor- 
dinate  system.)  Because of this  approach for solving  the  boundary-layer  equations,  the 
convective  heating rate and  the  aerodynamic shear s t r e s s  at the  wall are given  by 
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and 

Tw = .W( z)w( g)w 
where q is the  transformed  y  coordinate. 

With the  aid of the  Howarth  and  Mangler  transformations 

and 

equations (1) and (2) can be writ ten  for a flat plate (n = 0) as 

and 

and  for a blunt  axisymmetric body (n = 1) as 

and 

where 

and 
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The  heat-transfer  and  shear-stress  values  on  cones  can be computed by using  the 
Mangler  transformation  with  equations (5) and (6), respectively. 

In  this  investigation,  the  thermodynamic  and  transport  properties of equilibrium 
dissociated air are assumed  to be known, and  the  problem is to  evaluate  the  normal 
derivatives  in  equations (5) to (8). The  exact  method  (ref. 10) of determining  these 
derivatives is a solution of the  equations  for  the  compressible  laminar  boundary  layer 
on a high-speed  digital  computer. This approach is the only  good method  presently 
available  for  the  computation of f; on a blunt  axisymmetric body.  However,  since  the 
complete  solution of the  boundary-layer  equations is not  always  desirable  and  can be 
time  consuming,  approximate  methods  (refs. 11 and 12) which are acceptable  for  engi- 
neering  applications  have  been  developed. 

Approximate  Methods 

For flat plates, the normal  velocity  derivative is approximated  in  references 11 
and  13 as 

1 1  fw = 0.47 (:;;:)O*5 - (1 1) 

where  Eckert's  reference-enthalpy  method is used  to  evaluate  the  reference  conditions. 
Equation (11) is used  with  equation (6) to  compute  the shear-stress or  skin-friction  coef- 
ficient  cf;  the  skin-friction  coefficient is then  related  to the heat-transfer rate through 
a modified  form of Reynolds  analogy.  Therefore, this procedure  does  not  require a 
direct  approximation  for  the  normal  enthalpy  derivative  to  compute  heat-transfer rates. 
In  reference 11, this  approach  for  computing  the  heat-transfer  and  shear-stress  values 
is shown to  compare  very  well  with  the  exact  solutions. 

For blunt  axisymmetric  bodies,  equations of the  form 

for  approximating the normal  enthalpy  derivative  at  the  stagnation  point are given  in ref- 
erences 11 and  14.  The  results  from  these  references  were  obtained by correlating 
exact  solutions of the  stagnation-point  boundary-layer  equations  and  can be used  with 
equation (7) to  compute  the  stagnation-point  heat-transfer rate. For calculations  away 
from  the  stagnation  point,  equation (61) in  reference 11 and  equation (28) in  reference  12 

are approximations  for && (shown as gnw/(l - gw) that  can be used 
gnws/(' - gws) 

with  an  equation  similar  to  equation (23) in  reference 11 to  compute  qi/qw,s.  Although 
equation (61) in  reference 11 is more  general  than that given  in  reference 12, it is difficult 
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to  evaluate and represents  exact  similar  solutions  within only 15 percent.  The  relation 
given  in  reference 12 is based on  high  wall  cooling  conditions  and  constant  Prandtl  num- 
ber  and  expliciflgneglects  dissipation  effects.  In  addition,  neither  relation  allows  for 
the  direct  evaluation of i$, and,  thereby, of qw. No accurate,  practical  methods are 
known for  the  approximation of f; and, thereby, of T~ on a blunt axisymmetric  body. 

From  the  preceding  discussion,  the  desirability  for  simple,  accurate  methods  for 
evaluating  the  normal  derivatives of enthalpy  and  velocity  in a reacting  boundary  layer 
is evident.  These  methods  have  been  obtained  by  correlating  the  exact  similar  solutions 
given  in  reference 11 for  equilibrium  dissociated air with a unit  Lewis  number. In ref- 
erence 11, a nonunit  Lewis  number  for  equilibrium  dissociated air is shown to  have a 
negligible  effect on the  shear   s t ress  and  heat  transfer.  The  relations  developed (as 
given  in  appendix A) for  the  present  methods  are as follows: 

For  a flat plate or cone 

and 

For a blunt  axisymmetric body 

and 

where P for  a body of revolution at an  angle of attack of Oo is obtained  from  refer- 
ence 11 as 

at the  stagnation  point os 1/2 and te = 1. The  present  solutions  (eqs. (13) to  (16)) as 
well as the  exact  solutions of reference 11 are   based on the  transport-property  data 
given  in  reference 15. 
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In  table I and  figures 1 to  4  results  from  equations (13) to (16) are  compared  with 
a representative  number of exact  similar  solutions  from  table 111 of reference 11. (The 
exact  solutions  in  table I11 of reference 11 a r e  only for  conditions up to  and  including a 
fully  dissociated  boundary  layer.)  The  results of the  equations  compare  within *7 per- 
cent  for a majority of the  solutions  and  within *lo percent  for all the  solutions.  In  addi- 
tion  to  the  simplicity  and  accuracy of equations (13) to  (16), the  results  with  which the 
equations  were  correlated  cover a wide  range of boundary  conditions.  The  ranges of 
boundary  conditions for equations (13) and (14) were 

0.2505 6 - 5 1.969 PePe 
pw  Pw 

0.00794 5 te 6 0.8 

and 
313 

0.00603 I CW 6 O.*@ 

The  ranges of boundary  conditions  for  equations (15) and (16) were 

0.1835 5 - "" 5 0.9367 
pw  PW 

0.2 5 te 6 1.0 

0.0076 5 CW 5 0.75 

and 

0.5 6 B 6 3.5 

As previously  stated,  the  present  relations  and  the  exact  solutions of reference 11 a r e  
based on the  transport-property  data  in  reference 15. Erroneous  results would be 
obtained  from  these  relations  (eqs. (13) to (16)) by using  transport-property  data  sig- 
nificantly  different  from  that of reference 15. In  addition,  results  from  the  present 
relations  obtained by using  the  transport-property  data of reference  15  are  expected  to 
be  in good agreement  with  other  exact  solutions  wherein  different  high-temperature 
transport  data  have  been  used.  This good agreement is expected  because  the  authors 
of reference 16 showed that changing  the  values of the  transport  properties  in  the  outer 
portion of the  boundary  layer by a factor of 3  has a negligible  effect  on  an  exact  solu- 
tion  for f: and <;. 
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With  equations (14) and (16) the  heating rates on flat plates and  blunt  axisymmetric 
bodies, respectively,  can be computed  directly c". -. - 
Equation (15) provides a simple,  accurate  method  for  computing f$ and,  thereby,  the 
shear  stress on a blunt  axisymmetric body. The  application of equations (13) to (16) 
to  expressions  for  computing  the  heat  transfer  and  shear stress on flat plates,  cones, 
and  blunt  axisymmetric  bodies is given  in  appendix B. 

CONCLUDING REMARKS 

The  convective  heating rate and  aerodynamic  shear stress are functions of the 
normal  derivatives of the  enthalpy  and  velocity,  respectively,  evaluated  at the surface 
of a body.  Simple,  approximate  equations  have  been  developed  for  determining  these 
derivatives  for a laminar  boundary  layer  in  equilibrium  dissociated air. These  equa- 
tions  were  developed by correlating  exact  similar  solutions  to  the  boundary-layer  equa- 
tions  over  wide  ranges of boundary  conditions  for  flat  plates  or  cones  and  blunt  axisym- 
metric  bodies.  The  results of the  approximate  equations  represent  the  exact  solutions 
within +-10 percent. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton,  Va.,  December 22, 1967, 
129-01-03-08-23. 
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APPENDIX  A 

DEVELOPMENT OF APPROXIMATE  RELATIONS 

For a flat plate or cone  the  incompressible  zero-pressure-gradient  relation  for 
the  velocity  and  enthalpy  derivatives is obtained  from  reference 17 (p. 487) as 

Compressibility  effects  were  accounted  for  in  the  present  investigation by  evaluating  the 
rat io  2 at a reference  condition  given by Eckert's  reference-enthalpy  technique. 

The relation  for fk then  obtained  (eq. (13)) was 
PWPW 

f;G = 0.47 (;w*;$*475 - 

The  exponent  0.475  was  used  rather  than  0.5,  which  was  used  in  references 11 
and  13 (p.  136), since  it  gave a better  f i t   to  most of the  data.  The  approximate  relation 
for  was found to  correlate  the  exact  solutions  better if the  term 
[' - (1 - Npr,w) (1 - 'e] was  used  rather  than  the  factor Npr,w 1/3 which is given 
in  reference 18  (p. 264).  In  reference 6, the  author  shows  that  does not 
account  for  variable  Prandtl  number  effects on e;. The present  term,  which is par t  
of an  expression  for  computing  the  zero-pressure  gradient t& in  reference  13,  allows 
for  the  variation  in  the  Prandtl  number  and  the  dissipation  parameter t e e  The 
resulting  relation  for ck (eq. (14)) was 

For the blunt  axisymmetric body, the effect of pressure  gradient on <; was 
accounted  for by the  term (1 + O . 1 s e )  which is similar  to  the  expression given  in ref- 
erence 12. In addition,  the  data of reference 11 were  correlated better by  evaluation of 
the  pp  product at the  conditions  external  to  the  boundary  layer  rather  than at the ref- 
erence  conditions.  The  resulting  expression  for <; on a blunt body  (eq. (16)) was 

In  reference 3, the  pressure-gradient  parameter ,3 was shown to  have a grea te r  effect 
on f;; than on (SI in  ref. 3). For the  calculation of f;, the  relation 
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APPENDIX A 

f; = 0.47 (;;e3)0475(l - + 

was  used  in  an  attempt  to  correlate  the  exact  solutions. 

(A21 

However,  for  increasing  values 
of p at  values of Cw 2 0.2, equation (A2) underpredicted  the  exact  solutions.  The 
exact solutions of reference 11 were  normalized  with  the  corresponding  results of equa- 
tion (A2), and  the  ratio  was  plotted as a function of the  product of PCw. The  deviation 
from  unity  appeared  to  vary  exponentially  with  increasing  values of PCw. The exponen- 

PCW - 
tial e was found to  fit  the  deviation.  Therefore,  the  resulting  relation  for f$ on 
a blunt  axisymmetric body (eq. (15)) was 

0.475 PCW 

f; = 0.47(-) Pep e (1 + @;)e 
- 

pwpw 
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APPENDIX B 

APPLICATION OF APPROXIMATE  RELATIONS 

The  approximate  equations (13) to (16) can be used  with  equations (5) and (6) and 
equations (7) and (8) to  compute  heat-transfer  and  shear-stress  values on flat plates or  
sharp  cones  and  blunt  axisymmetric  bodies,  respectively.  After  proper  substitution of 
the  present  results  in  equations (5) to (B), the  resulting  expressions  for  the heat transfer 
and shear s t r e s s  are as follows: 

For a flat  plate 

and 

For a cone,  multiply  the  right-hand  side of equations  (Bl)  and (B2) by the fi 
(Mangler's  transformation  for a cone  and  flat  plate). 

For  a blunt  axisymmetric body (at the  stagnation  point) 

where 
r = x  

t e  = 1 

and, as in  reference 19 
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For a blunt body (away from the stagnation point) 
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I 

TABLE I . -  COMPARISON OF SOLUTIONS O F  CORRELATION EQUATIONS WITH EXACT 

SIMILAR  SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR 

t E  

3.131 
3.131 
.952 
.476 
1.43 
1.086 
.4346 
,8125 
.I3175 
,5224 
,397 

10.0 

1 
10.0 

I 

10.0 

I 

10.0 

1 
10.0 

I 
10.0 
10.0 
2.0 

I 

te 

0.0476 
.0476 
.0476 
.0476 
.02173 
,02173 
.02173 
.01235 
.01235 
.00794 
.00794 

1 .o 

1 
1.0 

1 
1.0 

I 
.8 

I 
.6 

I 
1 .o 

1 

TW 

0.0476 
.313 
,0145 
.0476 
.0715 
.lo9 
.0435 
.0812 
.00938 
.0522 
,00603 
.152 

V 
.30 

1 
.I5 

P 
.50 

I 

.50 

.20 

.50 

.0304 

I 

NPr 

0.709 
.I68 
.IO8 
.I68 
.699 
.I68 
,768 
.I68 
.IO9 
.I68 
,709 
.IO9 

I 
,680 

T 
.I35 

7 

,699 

I 
,699 

I 
,690 
.699 
.IO9 

I 

PeWe - 
pw Ww 

1.0 
1.969 
.6535 
1.009 
1.529 
1.785 
1.286 
1.969 
.9053 
1.969 
.9052 
.5122 

Y 
,6419 

\' 
.9149 

I 
,8468 

1 
,9367 

I 

.5  568 

.I833 

.2940 

1 

B 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
.5 
1.0 
1.8 
2.2 
3.0 
3.5 
.5 
1.0 
1.8 
2.2 
3.0 
3.5 
.5 
1.0 
1.8 
2.2 
3.0 
3.5 
.5 

1 .o 
1.8 
2.2 
3.0 
.5 
1.0 
1.8 
2.2 
3.0 
3.5 
.5 
.5 
.5 
1.0 
1.8 
2.2 
3.0 
3.5 

solutions 
Present  

0.362 
.460 
.298 
.364 
.388 
.411 
.361 
.396 
.283 
.372 
.264 
.591 
,702 
.838 
.898 
1.008 
1.073 

.666 

.800 

.976 
1.055 
1.028 
1.302 
.819 
1.021 
1.321 
1.473 
1.791 
2.003 
,739 
,894 
1.110 
1.214 
1.422 
,735 
.879 
1.079 
1.176 
1.370 
1.494 
.618 
.I45 
.450 
.528 
.621 
.660 
.I29 
.I68 

solutions 
Exact 

(ref. 11) 

0.3683 
.4695 
.3037 
.3708 
.3944 
,4199 
.3695 
.4054 
.2867 
,3819 
.2670 
.54 10 
,6464 
,7718 
.8235 
,9135 
,9632 
.6407 
,7939 
.9797 
1.057 
1.194 
1.271 
.8517 
1.114 
1.436 
1.571 
1.811 
1.946 
.7442 
.9468 
1.195 
1.300 
1.485 
,7411 
.9387 

1.182 
I. 284 
1.466 
1.568 
.57  56 
,748 1 
.4182 
.4971 
.5894 
.6269 
.6916 
.I269 

~ 

Present  
solutions 

0.249 
,246 
.212 
.270 
,254 
.283 
,267 
,280 
,200 
.272 
.187 
.310 
.319 
,329 
,333 
.340 
.344 
,285 
,293 
,302 
.306 
,312 
.316 
.121 
,124 
,128 
,129 
,132 
,134 
,217 
,222 
.228 
,231 
,236 
.211 
.216 
.221 
.223 
,227 
.229 
,305 
.224 
.273 
.280 
.289 
.292 
,299 
.302 

~~ 

solutions 
Exact 

(ref. 11) 

0.2609 
,2387 
.2222 
,2815 
.2630 
.2924 
,2805 
.2923 
.2092 
.2856 
,1954 
.3055 
.3160 
,3260 
,3296 
,3351 
.3377 
,2646 
,2753 
.28  54 
.2890 
.2944 
,2971 
.1141 
.1199 
,1254 
,1272 
,1302 
,1316 
,1987 
,2074 
.2156 
.2185 
,2229 
,1882 
.19  59 
,2032 
.20  58 
.2098 
.2118 
,2909 
.2079 
.2625 
.2718 
.2807 
.2839 
,2888 
.2912 
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TABLE 1.- COMPARISON OF SOLUTIONS OF CORRELATION EQUATIONS  WITH  EXACT 

SIMILAR  SOLUTIONS FOR EQUILIBRIUM  DISSOCIATED AIR - Continued 

te  

~~ ~ 

1 .o 

1 
1.0 
1.0 
1.0 

I 
1 .o 

1 
.8 

V 
.2 

t 
.8 

1 
.4 

1 

CW 

0.20 

I 
.05 
,075 
,0152 

I 
.10 

1 
.0152 

1 

.0152 

1 
.10 

1 
.10 

t 

Np r 

0.768 

Y 
,681 
,685 
,709 

V 
.768 

V 
.IO9 

I 
,709 

1 
. I68  

I 
,768 

1 

Pepe  
pw pw 
- 

0.5790 

I 
.3448 
.4014 
,2322 

I 
,4571 

1 
.2505 

V 

,4028 

1 
.4932 

V 
.6249 

P 

0.5 
1.0 
1.8 
2.2 
3.0 
3.5 

.5 

.5 

.5 
1.0 
1.8 
2.2 
3.0 

.5 
1.0 
1.8 
2.2 
3.0 
3.5 
0 

.5 
1.0 
1.8 
2.2 
3.0 
0 

.5 
1.0 
1.8 
2.2 
3.0 
0 

.5 
1.0 
1.8 
2.2 
3.0 
0 

.5 
1.0 
1.8 
2.2 
3.0 
3.5 

solutions 
Present  

0.629 
.I50 
.go1 
.969 

1.095 
1.170 

.486 
,523 
,402 
,471 
,552 
,586 
,647 
,558 
,659 
,782 
,835 
.931 
,986 
,268 
.398 
.462 
.538 
.570 
,626 
.293 
.402 
.443 
,490 
,510 
.546 
.364 
.553 
.647 
. I 6 2  
.E11 
.goo 
,381 
.549 
.624 
. I 1 6  
. I56  
.E28 
.E70 

solutions 
Exact 

(ref. 11) 

0.6205 
,7705 
,9526 

1.029 
1.162 
1.237 

,4569 
,4978 
,3752 
.4470 
,5314 
,5657 
,6248 
,5422 
,6633 
,8092 
.8698 
.9758 

1.035 
.2703 
.3733 
,4415 
.5218 
.5544 
.6107 
.294 1 
.3701 
.4241 
.4895 
,5164 
,5629 
.3671 
.5377 
.6530 
,7925 
.8 504 
.9519 
.3840 
.5280 
.6291 
. I528 
.8044 
.E948 
.94 50 

solutions 
Present  

0.310 
,319 
,329 
,333 
,340 
,344 
.288 
,302 
,248 
.254 
.262 
,266 
.271 
,312 
,321 
.331 
,335 
,342 
.346 
,248 
.240 
,246 
.253 
,256 
.261 
.221 
.238 
.241 
.244 
.246 
.248 
.312 
,306 
,314 
.323 
.326 
.333 
.296 
.304 
.310 
.316 
.318 
.323 
.326 

solutions 
Exact 

(ref. 11) 

0.3155 
,3285 
.3410 
,3454 
.3521 
.3555 
.2656 
,2783 
,2399 
,2485 
.2567 
,2596 
,2641 
.3257 
,3383 
.3  504 
.3 547 
,3613 
.3646 
.2206 
.2365 
.2449 
.2531 
,2560 
.2606 
,2200 
,2339 
,2427 
,2522 
.2 558 
.2617 
.2955 
,3191 
.3314 
.3433 
.3476 
.3542 
,2891 
,3099 
.3219 
,3342 
.3388 
,346 1 
,3498 
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TABLE I.- COMPARHON OF SOLUTIONS OF CORRELATION EQUATIONS WITH EXACT 

SIMILAR  SOLUTIONS  FOR  EQUILIBRIUM DISSOCIATED AIR - Concluded 

I c G 
tE  PW te Npr Present  B PWMw 

Exact 

(ref. 11) (ref. 11) 
solutions fi$g:s solutions solutions 

Exact 

- 

1.0 

,2286 .246  .3153  ,314 0 .3977 .4 
,2522 .271  .4227 ,447 .5 .2909 .680 .03  1.0 1.0 

..3518  ,334 ,9009  ,820 3.5 i I I v I 

.3476  ,332 .a549 ,785 3.0 
,3394  .329 ,7721  ,726 2.2 
,3343 .327  . I250 .694  1.8 
,3209  ,322 .6126  .620  1.0 
,3086  .318  .5218  .559 .5 

0.2889 0.288  0.3965 0.393 0 0.7931 0.768 0.10 0.2 

.5 ,440  .4163  ,248  ,2439 
1.0 ,498  ,4862 ,253  .2  528 

1.8 ,566 .2621 ,258  ,570 1 
1 1 V 1 1 3.0 ,645  ,6645 ,264 .2710 

1 .o .2 .03  ,680 

,2741 ,264  ,6417  ,612  3.0 
,2640 .260 ,5546  ,548  1.8 
,2539 .256  ,4778 ,494  1.0 
.2446  ,253 ,4146  .448 .5 
,2298 ,235  ,3263  ,325 0 ,5048 

/ I 1  
I 1 1 1  

I 1  
.5 

.2369 ,239  ,5088  ,523 2.2 

,2343 ,236  .4775 ,493  1.8 
,2268 ,229 ,4008  .421 1 .o 
,2190  ,223 .33 57 .359 .5 .183  5 ,709 ,0076  1.0 

I 3.0  ,576 ,5627 ,244 

,2794  .275 .3595  ,356 0 .6249 ,768  .05 .2 .5 
,3324  ,305 . I698 ,722 3.0 I I I I I 
.3256  .300 .6957  .663  2.2 
.3213 ,298  ,6532  .630 1.8 
,3098  ,292  ,5511  ,553 1.0 
,2988 .287  ,4672 ,488  .5 
.2800  ,282 ,3477  .345 0 ,4932 ,768  .05  .4 .5 
,3357 .308 ,7960  . I55 3.0 V Y 1 I I 
,3293  ,302 ,7167  ,689 2.2 
,3253 .299  .6713  ,651 1.8 
,3142 ,292 ,5617  ,563 1.0 
,3031 .286  ,4710 ,489  .5 
,2829  .289 ,3389  ,336 0 .4297 ,768 .05 .6 .5 

,3511 .327  .E872 ,856  3.5 I V I I I 
,3480 ,323 .E388  ,812  3.0 
.3419 ,316  ,7513  ,733  2.2 
.3380  ,312 .IO12 ,689  1.8 
,3267  ,303 ,5798  ,584 1 .o 
,3150 ,295  ,4784 ,497  .5  ,3613  ,768  .05  1.0 .5 
.24  10 

1 1 1  

.5 

,3208 ,308 .6291 ,610 1.8 
,3084  .304 .5369  .549  1.0 
,2971  ,300 ,4623 .497 

I I 2.2  ,637 ,3255 ,310  .6676 
.5 .313 . I 3 5 1  ,684  3.0  .6249 . I 6 8  .05 .2 

t .3373 .315  .I724  ,711 3.5 t t t t 
.3332 
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fw 

02 

0 01 

S o l u t i o n :  
0 E x a c t  ( r e f .  11) 
- P r e s e n t  (eq.  (13)) 

02 03 04 

Figure 1.- Comparison of present results with exact solutions for velocity  derivative for cone or flat plate. 
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S o l u t i o n :  

01 02 03 - 5  

Figure 2.- Comparison of present results with exact solutions  for  enthalpy  derivative  for cone or  flat plate. 
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Solution: 
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2.4 

Figure 3.- Comparison of present results  with exact solutions  for  velocity  derivative  for  blunt axisyrnrnetric body. 
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I 

S o l u t i o n :  
0 E x a c t  ( r e f .  11) 
- Present ( e g o  (16)) 

01 .2 

Figure 4.- Comparison of present results  with exact solutions  for  enthalpy  derivative  for  blunt axisymmetric body. 
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